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Gravity wave damping of hydrostatic oscillations 
for a buoyant disk 

By F. W. G. WARREN 
Department of Mathematics, Imperial College, London 

(Received 8 June 1967) 

A disk (i.e. a body whose maximum thickness is small compared with its lateral 
dimensions) floats with its central plane of symmetry upright. Its hydrostatic 
oscillations are lightly damped by the reaction of the gravity waves generated. 
A damping coefficient is obtained. It is shown that superimposed upon these 
oscillations is a small displacement which decays with the time t like t-* or t-5. 

1. Introduction 
When a buoyant vessel is initially disturbed from its position of hydrostatic 

equilibrium the ensuing motion is damped-among other things-by the genera- 
tion of surface gravity waves. The general problem has been discussed by several 
authors. For example, Wehausen (1960, p. 619) outlines a general theory which 
leads to a non-linear integro-differential equation. He reproduces in graphica1 
form Sretenskii’s (1937) numerical calculations for a particular case. Ursell 
(1964) describes a method which uses a force coefficient A(o) which is obtained by 
considering the problem of forced oscillations of frequency w.  He discusses the 
particular case of a half-immersed circular cylinder for which certain properties 
of A(w) are known or may be found from previous work. He found that the dis- 
placement (from the equilibrium position) decays like t-2 or t-3, the oscillatory 
components being exponentially small. 

It is worthwhile to note a theory for a class of bodies whose thicknesses are 
small compared with their lateral dimensions and which float upright, i.e, with 
their central planes of symmetry vertical. Viscosity is more important here than 
for fatter bodies, while the wave damping is much lighter; but nevertheless the 
theory is of interest. 

2. Formulation 
Consider the disk floating in an upright position at  the horizontal interface of 

two superposed homogeneous liquids which extend to infinity in all directions. 
When undisturbed the interface defines the (x, y)-plane, with the z-axis positive 
upwards. Let the central plane of symmetry of the disk coincide with the fixed 
vertical plane of the y- and z-axes and let the equation of the lateral surfaces of 
the disk a t  time t be 

(2.1) 2 = k d(Y, z, t )  = k a&/, 2 - z&), 
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where 2a is the maximum thickness of the disk. zo(t)  is the vertical displacement 
from the position of hydrostatic equilibrium. If p is the mean density of the upper 
and lower fluids, then the current density p may be expressed as a function of the 
height z in the form p = p(z) = ( 1  -Asgnz)p, 

where 0 < A < 1. Then the density difference between the two fluids is 2Ap. In  
the position of equilibrium let the area of the horizontal cross-section of the disk 
at  z = 0 be 2aB, 

so that B is a measure of the width. A mean height, say A ,  is defined in terms of 
the mass No of the disk by the relation 

( 2 . 2 )  

(2.3) 

No = SaABj?. (2.4) 

Since the thickness of the disk is small compared with its lateral dimensions, 
a < A ,  a < B, and a small thickness parameter is defined by 

a = 2a/A. (2.5) 

We wish to solve an initial value problem for the free oscillations of the body. 
However, it is simpler analytically to consider the equivalent problem in which 
the velocity and acceleration are zero a t  t = 0 and where a vertical disturbing 
force equal to 

is applied. Initially (0 < t < St)  the force is just sufficient to hold the disk at  
rest at  a height do above its equilibrium position, SO that 

NOW) (2.6) 

and 

zo(0) = do 

i O ( O )  = ZO(O) = 0, 

where a dot denotes differentiation with respect to the time. At time t = St, 
F(t)  becomes momentarily infinite and thereafter (t  > St) vanishes. In  this way 
a vertical velocity Uo is imparted to the disk just before its release, and the quasi- 

(2.9) 
initial conditions 

hold, where St + + 0. This approach simplifies the calculation of the drag made 
in the next section. 

To ensure that the disk’s motion is purely vertical, its shape is also symmetric 
with respect to the z-axis, so that 

ZO(St )  = do, So(&) = uo 

5(Y, 2, t )  = 5( - Y? 2, t ) .  (2.10) 

At points of the (9, 2)-plane outside the body, [(y, z, t )  is defined to be zero. When 
the upwards displacement is z,, and the interface is undisturbed the increase in 
the (hydrostatic) thrust is - 2 a B z o ~ g ~ p ~ ( z o ) .  

Here b(zo) is a factor which corrects for the change with the displacement of the 
cross-sectional area at z = 0. This is SaB only when the displacement is zero 
(unless the section is locally constant). Thus when xo is small (e.g. compared with 

(2.11) A )  w0 may write 
b(2,) = 1 + b,xo + O(Zi). 
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In the general case of oscillations with waves there will be an additional hydro- 
dynamic thrust gd which may be written conveniently as 

Bid = - aMoR(t) = - 4a2BpR(t). (2.12) 

The basic equation of motion of the disk may now be written 

zo(t) +aR(t )  + nib(zo)zo(t) = P(t). (2.13) 

Here no is the hydrostatic frequency: 

where 

no = (282/A)*, 

s2 = Ag. 

(2.14) 

(2.15) 

3. The hydrodynamic resistance 
In order to estimate the drag we assume that a < 1. No further assumption is 

made at  this stage (except that the velocity is suitably bounded so as to avoid 
splashing and/or cavitation). Suppose that $(r, t )  is the velocity potential at  a 
current point r (we will not distinguish between the potentials of the upper and 
lower fluids). Then the boundary condition at the surface of the disk is given 
approximately by 

if terms O(a2) are ignored (‘thin body’ approximation). Physically this equation 
represents a source distribution on the (y,x)-plane. Since the motion is sym- 
metric with respect to this plane, 

$(x, Y, 27 t )  = $( - 2, Y, 2, t ) .  ( 3 4  

Again for small a, the wave amplitude is small, and the kinematic condition a t  
the interface implies that a$/az is approximately continuous there (‘infinitesimal 
wave’ approximation). The strength of the vortex sheet at this surface is 
measured by G defined as 

(4x9 Y, t )  = 4($B=+o- $a=-o). (3.3) 

Similarly, continuity in pressure at the interface is expressed by continuity of 

at z = 0, approximately, if a is sufficiently small. (Lamb 1932, p. 375). In  terms 
of G, this condition may be expressed as 

where s 2  is given by (2.15). The boundary condition at infinity is $m = 0 and the 
initial conditions a t  t = 0 are that both $I and G and their first derivatives with 

a$I aG 
at at 

respect to time vanish; i.e. 

at  t = 0 (cf. (2.8).) 

$ = - = G = - = O  (3.5) 
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Now with regard to the excitation of the fluid caused by the motion of the disk 
and by the vortex sheet a t  the interface, the field equation for q5 reads 

V2$ = Za-d(x) + 2G6’(z), 

where the prime denotes differentiation with respect to z. Equations (3 .1 )  and 
(3 .3)  have been used here. Under a Fourier transform 

at 

this equation becomes 

m’ t ,  + 2imG(k, 1,  t )  = 0. (3 .6)  at (k2+Z2+m2)$(k ,Z ,m, t )+2a  

The variables here signify transformed quantities. For example 

J - c n  J - w  

= e-imzo(t)[o (1, m), 

where Eo(Z, m) = [(Z, m, 0).  
From ( 2 . 3 )  it  follows that 

m 

- W  Z=O 
1 d&(y7 2, t )  I t -o  = B, 

while from (2.10) E o ( k  m) = 50( - 1, m). 

(3 .7)  

Also it is useful to introduce plane polar co-ordinates in the horizontal (k,Z)- 
plane of wave-number space : 

k = KCOSB, 1 = KsinB, K > 0. (3.10) 

Then from (3 .6 )  we find from an application of the inverse operator 

that $(k ,Z ,z , t )  = dmeimz-” a‘(z t ) / ( ~ 2 + m 2 ) .  (3.11) 
at 

A vorticity equation now follows from this and equation (3 .4) )  viz. 

(3 .12)  

where V 2  = S2K = A ~ K  = frAngK (V  > 0). (3.13) 

Equation (3.12) may be solved for G by a quadrature which involves the kernel 
sin v(t - 7) : 
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where the initial conditions (3.5) have been used. If this expression for G is now 
inserted into (3.11), an integration by parts (twice) and an application of the 
inverse transform 

yields 

'r dkeikx 
277 --m 

a u ,  m, t )  
at $(x, 1, x ,  t )  = - 2772 Ar --a, d k e i k ~ / ~ / m ( ( e i ~ z +  Ae-Klzl S P z )  

+ (s2/v) (im - AK) e-KISl sgn z d7 sin v(t - 7) a'(1' m y  ") I (K~ + m2). 
a7 

(3.15) 
1: 

Here the initial conditions (3.5) have been used once more. 
Consider now the hydrodynamic pressure. This is given approximately by 

p = -pa$lat, 

aw, Y , 2, t )  at (y ,  2, t )  
gd = - 2 a Y  - w  d g r  -a dzp(x) at ax 9 

if a < 1, and so the resultant upward hydrodynamic thrust gd on the disk at 
time t is approximately 

(3.16) 

if terms O(a3) are neglected. In  this expression we substitute 

as a Fourier transform of a$/at. The expression for the thrust may then be written 

(3.17) 

Here, +/at may be found from (3.15) by a differentiation with respect to the 
time and the substitutions x = 0 and 1 = A. Inserting this into (3.17) we see that 
the x-integration may be performed. For example we have 

dze-ipz-KIzI(A - sgnx) = 2(ip + A K ) / ( K ~  +p2), etc. 

A substitution for <(Z,m,t) and < ( - A ,  - p , t )  from (3.7) now enables R ( t )  (cf. 
(2.12)) to be written in the approximate form 

W )  = J!fl-bO(t)) ZO(t) - K{zo(t)) [5o(t)I2 

+ S2/: d T r  dK Kf{K; Z&t), Zo(T) )  COS Y(t - T ) i o ( 7 ) ,  (3.18) 
- W  

with an error O(a).  
Here 
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where h has been replaced by 1, and the double integral l i m d k / i m d Z  has been 

transformed into its polar co-ordinate form, cf. (3.10). Ml{zo(t)} is a virtual mass 
coeEcient which derives from the first two terms of the integrand on the right- 
hand side of (3.15). It is given by an integral similar in structure to (3.19), but 
its precise form is not required here. Similarly for K{x,(t)}. 

So far no restriction has been placed upon the amplitude or velocity. Thus 
(3.18) may be used to estimate the wave energy generated a t  the interface when 
the disk ascends from low to high levels (i.e. from z = -a to z = +a) with a 
constant velocity (see, for example, Warren 1961). 

4. The equation of motion 
The introduction of (3.18) into (2.13) yields 

+ ~ ~ & O ( t ) } I ~ O ( t )  - a q z o ( t ) }  [WI2 

This is a non-linear integro-differential equation for the displacement, with an 
error O(a2). Also, it holds when F( t )  is an impulsive force, although during the 
time of its action only the first term on the left-hand side is relevant, viz. the 
inertia term which includes the virtual mass coefficient. Hitherto no restriction 
has been placed upon the amplitude; however, to find an approximate solution 
to the initial value problem we now suppose that the amplitude is small (com- 
pared with A )  and set zo( t )  = eAz(t) ,  where E < 1. Replacing F(t)  by eAF(t) and 
dividing by €A,  (4.1) becomes 

[i + a~ , {o} lq t )  + as2 aT dK Kf{K; 0, 01 cos v( t  - T ) q 7 )  

+ ntz(t) + ~ n t A b 1 [ ~ ( t ) ] ~  = F(t) ,  (4.2) 

if (2.11) is used and terms O(a2) and O(e2) are neglected. Some care is needed here 
when dividing by E .  If the velocity of the disk is O(E)  (rather than O( I)) ,  then a 
factor e appears in all the estimates and errors made in the previous section (cf. 
the thin body and infinitesimal wave approximations) and the error attached to 
(3.18) is O(ea). The error in (4.1) is then O(sa2) ,  and so division by e is viable. 
Finally, set e = o(a),  e.g. E = a2. The non-linear term on the left-hand side of 
(4.2) which derives from the hydrostatic thrust may then be ignored. Physically 
this means that the amplitude of the oscillations must be small compared with the 
(small) thickness of the disk. This condition may be relaxed if b, = 0, i.e. if the 
cross-section is locally constant in the neighbourhood of the interface. 

A non-dimensional form of (4.2) now follows if we divide by [l +aM,{O}] and 
make the successive substitutions 

J: 1: 

and 
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n - no is the change in frequency from a virtual mass effect. Then (4.2) reduces to 

Z(t) + a / ; d T p K K f ( K )  cosK+(t-T)qT)  +z(t) = h(t), (4.5) 

if terms O(a2) are omitted. Next, from (3.19) 

where (3.9) has been used. From (3.8) we see that 

f(O) = 2B/nA. (4.7) 

In  (4.6), K is real and positive. However, f(K) may be continued analytically into 
the complex K-plane. For when K >, 0 

where for convenience we temporarily revert to dimensional variables. With a 
little manipulation this latter expression reduces to 

m 

dzcA(1, x )  ecKlZl (sgn x - A), 
-03 

where the prime denotes differentiation with respect to z. Now from the definition 
(%lo), t0(1, z )  is an entire function of 1 which is real when 1 isreal. Hence from (4.6) 
and the dimensionless form of (4.8), f ( ~ )  is an entire function of K which is real 
and posit,ive when K is real and which is O ( r 2 )  (in fact o ( K - ~ ) )  when K is real, 

large and positive. Again, using (4.8), the Fourier transform [ and 
3, 

the identity J -m 

we see that f(K) may be written in the (dimensional) form 

( I I 4 ~ W f m  - W  d Y l r  -a3 d Y 2 f m  - W  dZlfm --m d x 2 ~ ~ ( Y l , ~ l ) ~ ~ ( Y 2 , ~ 2 ) e x P { - K ( I Z l I  + Iz2l)> 

x (A-sgnzJ(A-sgnx2) JO-HY,+Y2)>. (4.9) 

This indicates the behaviour of f(K)  in the complex plane. Thus for ready guid- 
ancef(K) may be compared with 

K-$( 1 + e--2aK) cos ~ B K ,  (4.10) 

when [ K I  is large. Physically from (4.9) we see that f(K) is related to a quasi 
weighted mean square value of the vertical rate of change of the disk's thickness 
at any point. 
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5.  Solution of the initial value problem 

h(t) enables the initial conditions attached to (4.5) to assume the form 
Referring to the initial conditions (2 .7) ,  (2.8) and (2 .9 ) ,  a suitable choice for 

~ ( 0 )  = d ,  i ( 0 )  = U ,  (5.1) 

where h(t)  = 0, t > 0. (5.2) 

A choice of methods is available for solving ( 4 4 ,  and it is worthwhile to note that 
an integration with respect to the time yields an integral equation for the velo- 

This is a Volterra equation of the second kind whose kernel is a function of ( t  - 7 )  

and is a well-known type whose solution may be found in a closed form by a Lap- 
lace transform (see, for example, Tricomi 1957, p. 23).  However, it is simpler to 
treat (4.5) directly. Subject to (5.1) and (5 .2) ,  a Laplace transform 

reduces (4.5) to D(w,cx)[(w) = U - i d w { l + a H ( w ) } ,  (5.5) 

D ( o , a )  = 1-w2{1 +aH(w)}.  (5.6) 

where [ ( w )  is the transform of x ( t ) ,  and 

Here we have made use of a Faltung theorem, viz. that the transform of 

/ : d 7 9 1 ( ~  - T ) 9 2 ( 7 )  

is equal to the product of the transforms of Fl(t) and Sz(t) (see, for example, 
Tricomi 1957, p. 24). H ( w )  is given by 

where 

The K-integrals here are discontinuous functions of w when I m  w changes sign. 
Hence we define (5 .7)  and (5.8) to hold only for 0 < phw < T, cf. (5.4). Sincef(K) 
is an entire function of K, the path of integration may be deformed in the complex 
K-plane so to avoid the pole at  K = w2 when w crosses the real w-axis. Cauchy's 
residue theorem then shows that when the K-path is returned to the real axis, 
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Ho(w) has an analytic continuation given by 

I H0(w) = J ~ f ( ~ ) / ( ~ - w ~ ) - 2 n i f ( o 2 ) ,  i fn  < phw < in 
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Here the behaviour of f ( K )  is known, and for large IwI the K-integral is O(lwl-2), 
0 < phw < 27~. When w is in the neighbourhood of the origin, however, the in- 
tegral has a logarithmic behaviour, and 

H&) - Zf(0)logw. (5.10) 

The operator inverse to (5.4) is 

dw e-iot, 

where c > 0. From (5.5) 

dwe-ioLIU+ idw{l +a.H(w)}]/D(w, a). (5.11) 

It is readily verified that D(w, a) has no zeros in the upper half plane, as is to be 
expected from stability considerations. From (5.9) H ( w )  is regular in the w- 
plane if this is cut along the negative imaginary axis. Comparing D(w, a) with 
the function 1 - w2, an application of RouchB's theorem shows that D(w, a) has 
exactly one zero, w = w1 say, within a large semicircle 101 = r(a), Rew > 0,  
where r(a)+cO as a+O. (A first approximation to {r(a)lmax yields a term 
O(llogal*). This follows from an examination of the large modulus zeros of 
D(w, a).) From (5.8),  w1 is given approximately by 

W 1  = 1-4aP.V.  d K K f ( K ) / ( K -  l)--&?Y$(l), (5.12) 

and so lies just below the real axis at  a distance O(a)  from w = 1. Hence in (5.11) 
the integrand is not uniformly bounded on the path of integration as a -+ 0, and 
so the path is deformed to lie well below wl. Once clear of this point the path re- 
turns to the real axis to avoid a possible encounter with the large modulus zeros. 
For example, a path L would suffice which consists of the semicircle 1w - 1 I = 1, 
Im w < 0, and that part of the real axis where w 2 2. On such a path the integrand 
behaves satisfactorily, and from (5.1 1) 

Jr 

(d + i Uw) e-iwt 
1 + +w( 1 - w2)(d/dw) logH(w) 

x ( t )  = Re 
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The real part of first integral in the right-hand side vanishes identically, while for 
large C( & 1) the major contribution to the second integral comes from the path in 
the neighbourhood of the origin. Setting w -+ - iw, this latter integral equals 

where L' is obtained from L by an anticlockwise rotation of &r about the origin. 
So for large t we obtain the approximate value of the integral (see, for example, 
Erdelyi 1956, p. 30), viz. 

2a.(0)[r(5)ut-5(1 +o(t--2)) + r(4)dt-yi + 0(t-2))1, (5.14) 

wheref(0) is given by (4.7). In  terms of dimensional variables, (5.14) equals 

Equation (5.13) embodies the principal results of the thin body theory, i.e. that 
the hydrostatic oscillations are damped by a factor 

(of. (5.12)), and that superimposed upon these oscillations is a small displace- 
ment O(a) which decays like t-4 or t-6. Also, the frequency and phase of the oscil- 
lations are modified by terms O(a) (cf. (4.3)). 

The two-dimensional case carries through. The basic modification is the omis- 
sion of the factor K in the integrand in the expression for H(o) ,  equation (5.7). 
This has the effect of changing the decay of the non-oscillatory component to the 
form 

t2 3(cld+c2;) (c1,2 = constant). 

These are the decay rates obtained by Ursell (1964) for the realistic case of the 
circular cylinder for which a = O(1). From the viewpoint of the linearization 
in a, this seems a coincidence. In  the case of finite depth, the principal effect is 
to modify H (  w )  as follows: 

where the fluids lie between horizontal planes situated a t  z = k Ah. This func- 
tion is again singular a t  the origin, and suggests that the decay of the non- 
oscillatory component is then of the form 

for three dimensions, and ; (c ld+c,q)  

for two dimensions. 
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